Researchers here demonstrate that, in mice, many biological markers of aging (in the epigenome, transcriptome, and metabolome) are made more youthful by a short in vivo exposure to the Yamanaka factors capable of reprogramming cells into induced pluripotent stem cells. That process also resets epigenetic marks on the genome to a youthful configuration, improving mitochondrial function, among other benefits. In this case, the …
Short In Vivo Reprogramming Treatment Reverses Age-Related Omics Changes in Mice
Researchers here demonstrate that, in mice, many biological markers of aging (in the epigenome, transcriptome, and metabolome) are made more youthful by a short in vivo exposure to the Yamanaka factors capable of reprogramming cells into induced pluripotent stem cells. That process also resets epigenetic marks on the genome to a youthful configuration, improving mitochondrial function, among other benefits. In this case, the …